Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
2.
Crit Care Med ; 49(11): 1974-1982, 2021 11 01.
Article in English | MEDLINE | ID: covidwho-1475880
4.
Clin Ther ; 43(5): 871-885, 2021 05.
Article in English | MEDLINE | ID: covidwho-1188425

ABSTRACT

PURPOSE: Coronavirus disease-2019 (COVID-19) continues to be a global threat and remains a significant cause of hospitalizations. Recent clinical guidelines have supported the use of corticosteroids or remdesivir in the treatment of COVID-19. However, uncertainty remains about which patients are most likely to benefit from treatment with either drug; such knowledge is crucial for avoiding preventable adverse effects, minimizing costs, and effectively allocating resources. This study presents a machine-learning system with the capacity to identify patients in whom treatment with a corticosteroid or remdesivir is associated with improved survival time. METHODS: Gradient-boosted decision-tree models used for predicting treatment benefit were trained and tested on data from electronic health records dated between December 18, 2019, and October 18, 2020, from adult patients (age ≥18 years) with COVID-19 in 10 US hospitals. Models were evaluated for performance in identifying patients with longer survival times when treated with a corticosteroid versus remdesivir. Fine and Gray proportional-hazards models were used for identifying significant findings in treated and nontreated patients, in a subset of patients who received supplemental oxygen, and in patients identified by the algorithm. Inverse probability-of-treatment weights were used to adjust for confounding. Models were trained and tested separately for each treatment. FINDINGS: Data from 2364 patients were included, with men comprising slightly more than 50% of the sample; 893 patients were treated with remdesivir, and 1471 were treated with a corticosteroid. After adjustment for confounding, neither corticosteroids nor remdesivir use was associated with increased survival time in the overall population or in the subpopulation that received supplemental oxygen. However, in the populations identified by the algorithms, both corticosteroids and remdesivir were significantly associated with an increase in survival time, with hazard ratios of 0.56 and 0.40, respectively (both, P = 0.04). IMPLICATIONS: Machine-learning methods have the capacity to identify hospitalized patients with COVID-19 in whom treatment with a corticosteroid or remdesivir is associated with an increase in survival time. These methods may help to improve patient outcomes and allocate resources during the COVID-19 crisis.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Adrenal Cortex Hormones , Alanine/analogs & derivatives , Antiviral Agents , COVID-19 Drug Treatment , Machine Learning , Adenosine Monophosphate/therapeutic use , Adolescent , Adrenal Cortex Hormones/therapeutic use , Adult , Aged , Aged, 80 and over , Alanine/therapeutic use , Antiviral Agents/therapeutic use , Female , Humans , Male , Middle Aged , Young Adult
5.
JMIR Public Health Surveill ; 6(4): e22400, 2020 10 22.
Article in English | MEDLINE | ID: covidwho-1172949

ABSTRACT

BACKGROUND: Racial disparities in health care are well documented in the United States. As machine learning methods become more common in health care settings, it is important to ensure that these methods do not contribute to racial disparities through biased predictions or differential accuracy across racial groups. OBJECTIVE: The goal of the research was to assess a machine learning algorithm intentionally developed to minimize bias in in-hospital mortality predictions between white and nonwhite patient groups. METHODS: Bias was minimized through preprocessing of algorithm training data. We performed a retrospective analysis of electronic health record data from patients admitted to the intensive care unit (ICU) at a large academic health center between 2001 and 2012, drawing data from the Medical Information Mart for Intensive Care-III database. Patients were included if they had at least 10 hours of available measurements after ICU admission, had at least one of every measurement used for model prediction, and had recorded race/ethnicity data. Bias was assessed through the equal opportunity difference. Model performance in terms of bias and accuracy was compared with the Modified Early Warning Score (MEWS), the Simplified Acute Physiology Score II (SAPS II), and the Acute Physiologic Assessment and Chronic Health Evaluation (APACHE). RESULTS: The machine learning algorithm was found to be more accurate than all comparators, with a higher sensitivity, specificity, and area under the receiver operating characteristic. The machine learning algorithm was found to be unbiased (equal opportunity difference 0.016, P=.20). APACHE was also found to be unbiased (equal opportunity difference 0.019, P=.11), while SAPS II and MEWS were found to have significant bias (equal opportunity difference 0.038, P=.006 and equal opportunity difference 0.074, P<.001, respectively). CONCLUSIONS: This study indicates there may be significant racial bias in commonly used severity scoring systems and that machine learning algorithms may reduce bias while improving on the accuracy of these methods.


Subject(s)
Forecasting/methods , Hospital Mortality , Machine Learning/standards , APACHE , Adult , Aged , Algorithms , Cohort Studies , Early Warning Score , Electronic Health Records/statistics & numerical data , Female , Humans , Machine Learning/statistics & numerical data , Male , Middle Aged , Retrospective Studies , Simplified Acute Physiology Score
6.
Pulm Med ; 2021: 8815925, 2021.
Article in English | MEDLINE | ID: covidwho-1033011

ABSTRACT

INTRODUCTION: The rapidly spreading Novel Coronavirus 2019 (COVID-19) appeared to be a highly transmissible pathogen in healthcare environments and had resulted in a significant number of patients with respiratory failure requiring tracheostomy, an aerosol-generating procedure that places healthcare workers at high risk of contracting the infection. Instead of deferring or delaying the procedure, we developed and implemented a novel percutaneous dilatational tracheostomy (PDT) protocol aimed at minimizing the risk of transmission while maintaining favorable procedural outcome. Patients and Methods. All patients who underwent PDT per novel protocol were included in the study. The key element of the protocol was the use of apnea during the critical part of the insertion and upon any opening of the ventilator circuit. This was coupled with the use of enhanced personnel protection equipment (PPE) with a powered air-purifying respirator (PAPR). The operators underwent antibody serology testing and were evaluated for COVID-19 symptoms two weeks from the last procedure included in the study. RESULTS: Between March 12th and June 30th, 2020, a total of 32 patients underwent PDT per novel protocol. The majority (80%) were positive for COVID-19 at the time of the procedure. The success rate was 94%. Only one patient developed minor self-limited bleeding. None of the proceduralists developed positive serology or any symptoms compatible with COVID-19 infection. CONCLUSION: A novel protocol that uses periods of apnea during opening of the ventilator circuit along with PAPR-enhanced PPE for PDT on COVID-19 patients appears to be effective and safe for patients and healthcare providers.


Subject(s)
COVID-19/complications , COVID-19/prevention & control , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Respiratory Insufficiency/etiology , Respiratory Insufficiency/surgery , Tracheostomy/methods , Aerosols , COVID-19/surgery , Dilatation , Feasibility Studies , Female , Humans , Male , Middle Aged , Personal Protective Equipment , SARS-CoV-2
7.
J Clin Med ; 9(12)2020 Nov 26.
Article in English | MEDLINE | ID: covidwho-945860

ABSTRACT

Therapeutic agents for the novel coronavirus disease 2019 (COVID-19) have been proposed, but evidence supporting their use is limited. A machine learning algorithm was developed in order to identify a subpopulation of COVID-19 patients for whom hydroxychloroquine was associated with improved survival; this population might be relevant for study in a clinical trial. A pragmatic trial was conducted at six United States hospitals. We enrolled COVID-19 patients that were admitted between 10 March and 4 June 2020. Treatment was not randomized. The study endpoint was mortality; discharge was a competing event. Hazard ratios were obtained on the entire population, and on the subpopulation indicated by the algorithm as suitable for treatment. A total of 290 patients were enrolled. In the subpopulation that was identified by the algorithm, hydroxychloroquine was associated with a statistically significant (p = 0.011) increase in survival (adjusted hazard ratio 0.29, 95% confidence interval (CI) 0.11-0.75). Adjusted survival among the algorithm indicated patients was 82.6% in the treated arm and 51.2% in the arm not treated. No association between treatment and mortality was observed in the general population. A 31% increase in survival at the end of the study was observed in a population of COVID-19 patients that were identified by a machine learning algorithm as having a better outcome with hydroxychloroquine treatment. Precision medicine approaches may be useful in identifying a subpopulation of COVID-19 patients more likely to be proven to benefit from hydroxychloroquine treatment in a clinical trial.

8.
Comput Biol Med ; 124: 103949, 2020 09.
Article in English | MEDLINE | ID: covidwho-695377

ABSTRACT

BACKGROUND: Currently, physicians are limited in their ability to provide an accurate prognosis for COVID-19 positive patients. Existing scoring systems have been ineffective for identifying patient decompensation. Machine learning (ML) may offer an alternative strategy. A prospectively validated method to predict the need for ventilation in COVID-19 patients is essential to help triage patients, allocate resources, and prevent emergency intubations and their associated risks. METHODS: In a multicenter clinical trial, we evaluated the performance of a machine learning algorithm for prediction of invasive mechanical ventilation of COVID-19 patients within 24 h of an initial encounter. We enrolled patients with a COVID-19 diagnosis who were admitted to five United States health systems between March 24 and May 4, 2020. RESULTS: 197 patients were enrolled in the REspirAtory Decompensation and model for the triage of covid-19 patients: a prospective studY (READY) clinical trial. The algorithm had a higher diagnostic odds ratio (DOR, 12.58) for predicting ventilation than a comparator early warning system, the Modified Early Warning Score (MEWS). The algorithm also achieved significantly higher sensitivity (0.90) than MEWS, which achieved a sensitivity of 0.78, while maintaining a higher specificity (p < 0.05). CONCLUSIONS: In the first clinical trial of a machine learning algorithm for ventilation needs among COVID-19 patients, the algorithm demonstrated accurate prediction of the need for mechanical ventilation within 24 h. This algorithm may help care teams effectively triage patients and allocate resources. Further, the algorithm is capable of accurately identifying 16% more patients than a widely used scoring system while minimizing false positive results.


Subject(s)
Betacoronavirus , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Coronavirus Infections/physiopathology , Machine Learning , Pneumonia, Viral/diagnosis , Pneumonia, Viral/physiopathology , Respiratory Insufficiency/diagnosis , Respiratory Insufficiency/physiopathology , Adult , Aged , Aged, 80 and over , Algorithms , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques/statistics & numerical data , Computational Biology , Coronavirus Infections/drug therapy , Coronavirus Infections/therapy , Female , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/therapy , Prognosis , Prospective Studies , Respiration, Artificial , Respiratory Insufficiency/therapy , SARS-CoV-2 , Sensitivity and Specificity , Triage/methods , Triage/statistics & numerical data , United States/epidemiology , COVID-19 Drug Treatment
9.
Intensive Care Med ; 46(10): 1904-1907, 2020 10.
Article in English | MEDLINE | ID: covidwho-671019
SELECTION OF CITATIONS
SEARCH DETAIL